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This study evaluated the acute efcts of ambient ozone (03)1 fine partCulate matter (PM25), and
strong aerosol acidity on the pulmonary function of exercisig adults. During the summers of
1991 and 1992, volunteers (18-64 years of age) were solicited from hiker on Mt. Washington,
New Hampshire. Volunteer nonsmokers with complete covariates (n = 530) had pulmonay func-
tion measured before and after their hikes. We calculated each hiker's posthike percentagec
in forced expiratory volume in 1 sec (FEV1), forced vital cpacity (FVC), the ratio of these two
(FEV1IFVC), forced ep y flow between 25 and 75% ofFVC (FEPF2,57,,, and peak expirato-
ry flow rate (PEFR). Average 03 exposures ranged from 21 to 74 ppb. After adjustment for age,
sex smoldng sttus (former vrsus never), history of asthma or wheeze, hours hike, ambient tem-
perature, and other covarates, there wa a 2.6% decline in FEVj [95% confidence inteval (CI),
o.44.7; p = 0.02] and a 2.2% decline in PVC (CI, 0.8-3.5; p = 0.003) for each 50 ppb increment
in mean 03. There were consistent associatons of decrement in both FVC (0.4% dedine; CI,
0.20.6, p = 0.001) and PEER (0.8% decine, CI, 0.01-1.6; p = 0.05) with PM2-, and of decre
ments in PEFR (0.4% dedine; CI, 0.1-0.7; p = 0.02) with strong aerosol acidity across the
interquartile range of these exposu. Hikes with asthma or a history of wheeze (n = 40) had
fourfold greater responsiwnes to ozone than others. With prolonged outdoor exercise, low-lev
exposures to 03, PM25, and strong aerosol acidity were a ed wi sigif t eff on pul-
monary function among adults. Hikers with a history of asthma or wheeze had significantly
greater air pollution-related changes in pulmonary function. Key work aerosol acidity, air pollu-
tion, fine particulate matter, ozone, pulmonary function. Environ Healbt Perspect 106:93-99
(1998). [Online 22 January 1998]
htnp:/ebpnetl.nieus.nih.gpv/docs/19981106p93-99koriklabstrahsml

Acute ozone (03) exposure is associated with
reversible decrements in pulmonary function
(1,2), and 03 inhalation can precipitate
symptoms of lower respiratory irritation such
as cough, shortness of breath, and pain with
inspiration (3,4). Controlled chamber expo-
sure studies have shown that 0 is associated
with acute declines in lung ?unction and
increased respiratory symptoms at exposure
levels ranging from 80 to 400 ppb (2,5). Far
less is known about the response of adults
with more diverse demographics and fitness
levels who are exposed to low-level 03 during
vigorous exercise in the ambient environ-
ment. Furthermore, there are inconsistencies
between results of controlled exposure and
observational studies regarding the expo-
sure-response relationship and, in particular,
whether there are levels of 03 exposure below
which acute health effects are not detectable.

We evaluated the acute effects of ambi-
ent 03 and concomitant fine particulate
matter (PM2.5) and aerosol acidity exposures
on pulmonary function in a diverse popula-
tion of healthy adults exposed to varying 03
levels while hiking on Mt. Washington in
the White Mountain National Forest of
New Hampshire.

Photochemical reactions of nitrogen
oxides and hydrocarbons from upwind

industrial and urban areas of the central and
northeastern United States produce episodi-
cally high 03 levels in the Mt. Washington
area. For example, hourly mean 03 concen-
trations on the mountain between 1987 and
1993 ranged from 0 to 148 ppb (6). The
White Mountain National Forest is a popu-
lar site for outdoor recreation, with over 7
million visitor days each year, including
60,000 hikers on Mt. Washington and
additional hikers on neighboring peaks who
are exposed to elevated 03 while exercising.

Methods
Volunteers were solicited from adults
(18-65 years of age) beginning a day hike
on Mt. Washington from the trail entrance
at Pinkham Notch, New Hampshire, on 78
days during the summers of 1991 and
1992. A study researcher, spirometry equip-
ment, and a sign soliciting volunteers were
placed in full view of all hikers who used
this trail entrance. All passing hikers who
agreed to participate were evaluated. The
study researcher and hikers were unaware of
the ambient 03 or other pollutant levels.
After explaining the study, the researcher
obtained written informed consent from
each subject before his/her evaluation. This
study was approved by the Human

Research Committee of Brigham and
Women's Hospital. Only current nonsmok-
ing subjects were induded in these analyses.

Spirometry measurements. Pulmonary
function was measured outdoors at 620 m
above sea level next to the entrance of the
main trails to the summit of Mt.
Washington. Each participant performed a
minimum of three and a maximum of eight
forced expiratory maneuvers before the day's
hike and again after returning to the base.
Prehike tests generally were performed
between 0800 and 1030 hours and posthike
tests were performed between 1500 and
1930 hours. Most (90%) posthike testing
was performed within 25 min of completion
of the hike. Subjects were tested, while seated
and wearing nose clips, with a 12-liter
Morgan Spiroflow spirometer (P.K. Morgan,
Andover, MA) attached to a personal com-
puter with customized software. The spirom-
eter was calibrated twice daily with a 3-liter
syringe, before the prehike and posthike
assessments.
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For each hiker, mean values for forced
expiratory volume in 1 sec (FEVy) and
forced vital capacity (FVC) were the means
of the two or three best acceptable (2') and
reproducible (± 5%) values. Values for forced
expiratory flow between 25 and 75% of
FVC (FEF2 _75%) and peak expiratory flow
rates (PEFR) were taken from the acceptable
and reproducible maneuvers that had the
maximum sum of FEVI and FVC. All
spirometry values were corrected to body
temperature and pressure saturated with
water (BTPS). Percentage change in pul-
monary function was calculated as 100 times
the posthike minus prehike pulmonary func-
tion divided by the prehike value.

Questionnaire measurements. Each
subject was given a diary to complete dur-
ing the hike and instructed in taking
his/her own pulse. The diary included a
record of each hiker's location, the time of
day when the location was reached, and the
hiker's pulse and respiratory symptoms at
four points on the hike-beginning, half-
way, high point, and finish.

After completion of his/her dimb, each
participant completed a modified American
Thoracic Society-Division of Lung Disease
(ATS-DLD) questionnaire (8) with ques-
tions regarding demographic information,
past respiratory illnesses and symptoms,
tobacco use, and weekly aerobic exercise.
Information on medication use was not
obtained.

Environmental exposure measurements.
Continuous 03 measurements were made
both at the Mt. Washington Observatory on
the summit (1,910 m above sea level) and
on the east side of the mountain base near
the beginning of the Mt. Washington Auto
Road (480 m above sea level). Summit
monitoring used a chemiluminescent 03
analyzer (Model 8410-E Ozone Analyzer;
Monitor Labs, San Diego, CA) in 1991 and
an ultraviolet photometric 03 analyzer
(Model 1008-RS; Dasibi Environmental
Corp., Glendale, CA) in 1992. The base site
used an ultraviolet photometric 03 analyzer
(Model 49-100; ThermoEnvironmental
Corp., Franklin, MA). At the summit site,
external 03 monitoring performance was
audited by the EPA and the state of New
Hampshire Air Resources Division. At the
base site, internal calibrations were conduct-
ed twice monthly. Ambient 03 concentra-
tions were expressed as the hourly mean of
continuous 03 monitoring. Hiker-specific
mean 03 exposures were defined as the aver-
age of both the summit and the base hourly
ambient 03 concentrations over the hours
during which the individual hiked.

Fine particulate matter or PM2.5 (aero-
dynamic diameter <2.5 pm in micrograms
per cubic meter) and strong aerosol acidity

(expressed here as sulfuric acid equivalent
mass concentration in micrograms per
cubic meter) were measured near the base
of the mountain. Fine particulate matter
was sampled on a Teflon filter with a 10-
l/min Harvard Impactor (Air Diagnostics
and Engineering, Inc., Harrison, ME) (9).
Strong aerosol acidity was sampled with a
modified Harvard Impactor with an
ammonia denuder to minimize acid neu-
tralization (10). Fine particulate matter and
strong aerosol acidity samplers operated for
approximately 10 hr (0800 to 1800 hrs) on
most days during which spirometry was
performed and results were reported as a
single integrated daytime measure. Fine
particulate matter and strong aerosol acidi-
ty samplers were audited for internal per-
formance approximately halfway through
each summer; measurements were correct-
ed to standard temperature and pressure
and reviewed for compliance with quality
assurance and quality control specifications
based on a modification of previously
established standards (Harvard 24 City
Acid Aerosol Study: Data Processing
Procedures; July 1992). On one day of
sampling, PM2.5 and strong aerosol acidity
samples failed to meet these specifications
and were excluded from these analyses.

Ambient temperature was measured at
the base of the mountain during each hiker's
prehike and posthike spirometry. In addi-
tion, daily ambient mean temperatures were
obtained from National Oceanographic and
Atmospheric Administration weather sites
on the summit (the Mt. Washington
Observatory) and at the Appalachian
Mountain Club facility at the base of the
mountain.

Hiking (or exposure) time was defined
as the difference between the times of the
prehike and posthike spirometry tests for
each participant.

Statistical methods. Three pollutant
exposure variables were considered in these
analyses: the average of both the base and
summit hourly 03 concentrations for the
hours of each hiker's hike (hiker's mean 03
per hour of hiking); daily PM25 concentra-
tions; and daily strong aerosol acidity con-
centrations. Each hiker's mean 03 exposure
was calculated if hourly base and summit 03
data were available for at least 50% of the
hike. Five outcome variables were studied:
the posthike percentage change in each of
FEV1, FVC, FEV1/FVC, FEF25-75%, and
PEFR The relationship of 03 to lung func-
tion was assessed using five different meth-
ods: quintile analysis, nonparametric
smoothing, linear regression, piecewise linear
regression, and logistic regression. Potential
confounders of the relationship between 03
exposure and acute changes in pulmonary

function that were considered as linear terms
in the models induded ambient temperature
(mean daily temperatures at the summit and
base of the mountain as well as mean tem-
peratures at the time of prehike and posthike
spirometry) and daily PM2.5 and strong
aerosol acidity concentrations. Other covari-
ates considered as linear terms were age,
height, hours hiked, a proxy measure of fit-
ness (average hours of aerobic exercise per
week), and proxy measures of hike work
[estimated backpack weight, self-reported
maximum pulse over the hike, and percent-
age of age-predicted maximum pulse
achieved during the hike (age-predicted max-
imum pulse was defined as 220 minus age)];
covariates considered as categorical variables
were sex, smoking status (former versus
never), a history of physician-diagnosed asth-
ma, a history of chronic bronchitis, a history
of any wheeze, a history of severe wheeze
symptoms (at least two episodes of wheeze
associated with shortness-of-breath over the
previous year), year of hike, and proxy mea-
sures of hike work (carrying a backpack and
reaching the summit of Mt. Washington).
Covariates that were consistently significant
in multivariate models (coefficients with
two-sided t-tests with p<0.15) or that were
considered to be of a priori importance
(ambient temperature, sex, smoking status,
history of physician-diagnosed asthma or
severe wheeze, and certain proxy measures of
hike work) were retained in the final models.

To assess effect modification by cate-
gories of respiratory disease history, smok-
ing status, sex, hours hiked, and proxy
measures of hike work, a Wald chi-square
test for interaction between 03 and each
covariate was used, with hours hiked divid-
ed at the median. In addition, age was
divided into 10-year age groups to compare
the 03 effect across four age categories
(18-27, 28-37, 38-47, .48).

Hikers' mean 03 exposures were divided
into quintiles and plotted against the per-
centage change in each pulmonary function
measure. The adjusted mean (± standard
error) percent change in each pulmonary
function measure for each quintile of mean
03 exposure was estimated by the least-
squares means option of a general linear
model program (PROC GLM; SAS Institute
Inc., Cary, NC). The shape of the expo-
sure-response function was also assessed by
nonparametric smoothing with the locally
weighted regression loess function (11) in S-
plus (Statistical Sciences Division of Math
Soft Inc., Seattle, WA). The significance of
nonlinearities was tested with nonparametric
Ftests of generalized additive models (12).

Linear regressions were modeled by
ordinary least squares estimation and by
methods that accounted for the potential
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intraclass correlation among hikers hiking
on the same day (13). In addition, two lin-
ear regression models of the percent change
in each of FEV1, FVC, FEVI/FVC,
FEF25-75%, and PEFR as a function of
mean 03 exposure were assessed: one
assuming a single slope relationship and a
second assuming a piecewise relationship as
a conservative approximation of nonlineari-
ties suggested by the quintile and nonpara-
metric analyses. For the piecewise models,
an inflection point of 40 ppb mean 03 was
chosen on the basis of visual inspection of
the results of the quintile and nonparamet-
ric analyses (Fig. 1). The piecewise model
took the form

y=ca + R(x)(6) + 52(x-40)(1-6), (1)

where y = percentage change in each pul-
monary function measure, x = each hiker's
mean 03 exposure, S = 1 if the mean 03
exposure was <40 ppb, and S = 0 if the
mean 03 exposure was >40 ppb. An Fsta-
tistic was calculated to test the difference
between the two coefficients for 03 in the
piecewise models.

Logistic regression modeling was used
to assess the relationship between pollution
exposures and the odds of having a greater
than 10% posthike decline in each measure
of pulmonary function.

Results
Study population. The study recruitment
protocol (see Methods) did not assess the
total number of eligible hikers; as a conse-
quence, overall participation rates are not
available. Of the 766 hikers who volun-
teered to participate over the 1991-1992
study period, 595 (78%) provided accept-
able and reproducible spirometry data both
before and after the hike. Of the balance (n
= 171), 120 (70%) hikers did not return for
posthike spirometry, and the remainder did
not meet acceptability (n = 45) or repro-
ducibility (n = 6) criteria for spirometry (see
Methods). Current smokers (n = 19), hikers
with incomplete ambient 03 data (n = 35),
and hikers missing smoking status, respira-
tory disease histories, or other necessary
covariates (n = 11) were excluded, leaving
530 hikers tested on 74 days for analysis.
Of these hikers, 507 (96%) had measures of
PM2.5 and strong aerosol acidity concentra-
tions available. For the remaining 23 hikers
(4%), 15 (3%) hiked on days when PM2.5
and strong aerosol acidity measurements
were not taken and 8 (2%) hiked on a day
when the available PM2 5 and strong aerosol
acidity measurements did not comply with
quality assurance and quality control speci-
fications. The majority of hikers in the
analysis population were healthy, white

(97%), male (71%) never smokers (76%)
(Table 1). Ages ranged from 18 to 64 years,
with a mean of 35 years.

Hikers excluded because of unacceptable
or unreproducible spirometry, current smok-
ing, or missing 03 or other covariates were
slightly younger. More hikers were excluded
in 1992. Otherwise, hikers excluded from
these analyses did not differ substantially
from the analysis population (Table 1).

Airpollutant exposures. Peak 03 levels at
the mountain's summit were generally seen in
early morning, with minimal hourly variation
during midday (Fig. 2), a pattern seen at
other high-altitude sites (6,14). The inverse
of this diurnal pattern is typical at lower alti-
tudes and in regions with significant local
sources of 03 pollution (15). As a result of
daytime vertical mixing, 03 levels at the
mountain's summit and base were very simi-
lar during the usual hiking time of approxi-
mately 0900-1700 hours (Fig. 2). Hourly
base and summit 0 concentrations were
available, on average, ?or 98% ofhiking hours
and ranged from 6 to 94 ppb. The average of
the hourly 03 concentrations during each
hike ranged from 21 to 74 ppb with a mean
± standard deviation (SD) of40 ± 12 ppb.

The median daily PM2.5 concentration
was 10 pg/m3 with a maximum of 60 ig/im3;
the median strong aerosol acidity concentra-
tion was 0.3 jig/m3 with a maximum of 20
jig/m3. For most (89%) of the study days,
strong aerosol acidity concentrations did not
exceed 5 pg/m3 (102 nmol/m3).

Hikers' mean 03 exposures were corre-
lated with daytime PM2.5 (Spearman r =
0.77) and strong aerosol acidity levels
(Spearman r = 0.62). The Spearman partial
correlation (adjusted for 24-hr mean 03)
between daytime PM2.5 and strong aerosol
acidity concentrations was 0.42.

Temperature. Summer temperatures on
Mt. Washington are generally mild at the
base and cool on the summit. The average
temperature at the base during prehike and
posthike spirometry was 19 ± 3°C (range
9-29°C). On test days, the average temper-
ature was 17 ± 3°C (range 8-25°C) at the
mountain's base and 8 ± 30C (range
-2-16°C) at the summit. Although peak
hourly 03 levels do not correspond to the
hottest periods of the day at this site, aver-
age daily temperatures and mean 24-hr 03
levels were positively correlated at both the
summit (r= 0.69) and the base (r= 0.59).

Exercise. The average hiking time
between the prehike and posthike spirome-
try was 8 ± 1.5 hr (range 2-12 hr). Most of
the 530 hikers (75%) completed the 1,300-
m climb to the summit of Mt. Washington,
and 94% carried a backpack during the
day's hike. For the 517 hikers with diary
data, the mean self-reported maximum
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Figure 1. Posthike percentage changes in (A)
forced expiratory volume in 1 sec (FEV1) and (B)
forced vital capacity (FVC) versus mean 03 expo-
sure after adjustment for age, hours hiked, sex,
former versus never smoker, history of physician-
diagnosed asthma or severe wheeze symptoms,
carrying a backpack, reaching the summit, and
mean ambient temperature during prehike and
posthike spirometry. Error bars indicate 95% con-
fidence intervals for mean percentage change in
FEV1 and FVC for each quintile of 03. Quintile test
for trend: p = 0.08 for FEV1; p = 0.007 for FVC.

pulse rate attained during this exercise was
122 ± 26 beats/min or 66 ± 14% of age-
predicted maximum pulse. Hikers varied
widely in their usual activity levels, with
self-reported aerobic exercise (a proxy mea-
sure of fitness) varying from 0 to over 50
hr/week, with a median of 6 hr/wk.

Pulmonary function and ozone. After
adjustment for multiple covariates, linear
models demonstrated a 2.6% decline in
FEV1 [95% confidence interval (CI),
0.4-4.7] and a 2.2% decline in FVC (CI,
0.8-3.5) for each 50-ppb increment in hik-
ers' mean 03 exposure (Table 2). Use of the
maximum rather than the mean (see
Methods) acceptable and reproducible val-
ues for each pulmonary function measure
did not change the results. These models did
not include adjustment for the intraclass
correlation among hikers hiking on the same
day because these values were quite small
(<5%) and nonsignificant. Adjustment for
PM2.5 and strong aerosol acidity concentra-
tions did not change the observed inverse
relationship between changes in FEVI and
hikers' mean 03 exposures, but this associa-
tion was no longer significant (Table 2).
The inverse association between ambient 03
and changes in FVC was diminished and
nonsignificant after adjustment for the other
pollutants (Table 2).
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While the linear model was an accept- function suggested nonlinearity in the rela-
able description of the dose-response rela- tionship between posthike percentage
tionship in this study, both the quintile changes in FEVI and FVC and hikers' mean
analysis and a nonparametric smoothing 03 exposures, with the steepest changes

Table 1. Selected characteristics of hikers on Mt. Washington, New Hampshire, 1991-1992

Characteristic Analysis populaton (n= 530) Excluded hikers (n= 116)8 One-way hikers (n= 120)8
Raceb
White 510 (97) 110 (96) NA
Nonwhite 18 (3) 4 (4)

Maleb 375 (71) 81(70) 71 (66)
Tobacco useb
Current 0 (0) 21(19) NA
Former 125 (24) 8 (7)
Never 405 (76) 80 (73)

Asthma orwheezeb 40(8) 11 (10) NA
Hiked in 1992b 290(55) 84* (72) 74(62)
Reached summitb 396 (75) 82 (73) NA
Backpackb 498(94) 102(93) NA
Age (years)c 35 ± 10 (18-64) 32 10** (18-65) 35 + 11 (18-64)
Mean ozone (ppb)c.d 40 ± 12(21-74) 39 ± 10 (21-71) 41 ± 12(23-74)
Fine partculates <2.5 pm 15 ± 13 (0.7-60) 14 9 (0.7-60) 15 ± 12 (0.7-60)
(pg/m3)ce

Aerosol acidity H SO4 2 ± 4 (0.1f-20) 2 3 (0-20) 2± 3 (0.115)
equivalent(pgIm3c,e
Mean temperature 12 ± 3 (5-20) 12 3 (8-20) 13 ± 3 (5-20)
base + summit (OC)C

Baseline FEV1 (ml)c 4,083 ± 815 (1,825-6,561) 4,212 ± 750 (2,418-5,820) 4,125 ± 867 (2,284-6,400)
Baseline FVC (ml)c 5,135 ± 1,024 (2,886-7,972) 5,175 ± 951 (2,765-7,134) 5,121 ± 1,006 (2,755-7,332)
Hours hikedc 8 ± 1.5 (2-12) 8 ± 1.5 (1-11) NA
Abbreviations: NA, not available; SD, standard deviation; FEV1, forced expiratory volume in 1 sec; FVC, forced vital capavity.
"Total numbers for each variable vary because of missing data; one-way hikers did not return for posthike spirometry.
tValues shown are number 1%).
Values shown are mean ± SD (range).
'Where hiker-specific mean 03 values were not available, 8-hr (0900-1700 hours) mean 03 values were used.
"From a 10-hr daytime sample collected atthe base monitoring site; reported concentrations are adjusted to standard temperature and pressure.
fNegative values for acid aerosol levels are possible in cases where the acid concentration is very close to zero or there is an excess of basic
compounds in the aerosol.
p<0.001 by chi-square comparison with the analysis population.
p<0.01 by two-sided t-test comparison of means with the analysis population.
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Figure 2. Maximum and mean hourly ozone levels (ppb) at the summit and base of Mt. Washington for 74
days on which study hikers were evaluated in summer 1991 and 1992. EDT, Eastern Daylight Savings Time.

occurring at mean 03 exposures above
approximately 40 ppb (Fig. 1). These devia-
tions from linearity were not significant at
the p = 0.05 level in generalized additive
models (p = 0.07 for FEVi; p = 0.08 for
FVC). In adjusted piecewise models, there
was a significant difference between the esti-
mated effect of 03 above and below 40 ppb
(p = 0.005 for FEVI; p = 0.001 for FVC).
Above 40 ppb, there was a 4.4% dedine in
FEVy (CI, 0.5-8.2) and a 3.2% dedine in
FVC (CI, 0.7-5.6) for each 50-ppb incre-
ment ofmean 03 exposure (Table 2). These
inverse relationships above 40 ppb mean
03, although no longer significant, did not
change substantially after adjustment for
ambient PM25 and aerosol acidity concen-
trations (Table 2).

Hikers with a self-reported history of
physician-diagnosed asthma or severe
wheeze symptoms over the previous year
had significantly greater 03-associated
decrements in FEV, (7.5% decline for each
50-ppb increment in 03) than other hikers
(1.8% dedine for each 50-ppb increment in
03) (Table 3). Adjustment for ambient
PM2.5 and aerosol acidity concentrations
did not change the magnitude or signifi-
cance of this difference. Male hikers had
greater 03-related FEVI and FVC dedines
than female hikers; never smokers had
greater 03-related FVC declines than for-
mer smokers; and longer hikes were associat-
ed with greater 03-related FEVI and FVC
declines than shorter hikes, although none
of these differences was significant (Table 3).
There was no association between 03
responsiveness and age (Table 3).

There were insufficient numbers of hikers
with greater than 10% declines in FEV, (n =

11), FVC (n = 8), and FEV1/FVC (n= 4) to
evaluate this group separately. However, 109
and 71 hikers had greater than 10% posthike
dedines in FEF25%75% and PEFR, respective-
ly. After adjustment for multiple covariates,
03 was significantly associated with greater
than 10% declines in FEF25-75% [odds ratio
(OR) = 3.67; CI, 1.25-10.78; p = 0.02 for
each 50-ppb increase in mean 03].

Pulmonary function andfine particu-
late matter and aerosol acidity. There were
consistent associations between ambient
PM2 5 exposures and changes in FVC
(0.4% declines; CI, 0.2-0.6 across the
interquartile range for PM25 concentration
of 9 jig/m3) and PEFR (0.8% dedines; CI,
0.01-1.6 across the interquartile range for
PM2 5) that persisted but were nonsignifi-
cant after adjustment for ambient 03
(Table 4). Changes in PEFR had the
largest inverse association with strong
aerosol acidity exposures (0.4% decline;
CI, 0.1-0.7 declines across the interquartile
range for aerosol acidity of 1.3 pg/m3 or
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Table 2. Linear regression models of the percentage change in pulmonary function as a function of ambient ozonea

Model (n= 530) Percent change FEV1 Percent change FVC Percent change PEFR Percent change FEV1/FVC Percent change FEF2575%
Univariate -0.045 ± 0.018 -0.040 ± 0.012 -0.033 ± 0.047 -0.005 ± 0.015 -0.005 ± 0.057

(p = 0.01) (p = 0.0006) (p = 0.48) (p = 0.72) (p = 0.93)
Adjustedb -0.051 ± 0.022 -0.043 ± 0.014 -0.018 ± 0.058 -0.009 ± 0.018 -0.027 ± 0.070

(p = 0.02) (p = 0.003) (p = 0.76) (p = 0.61) (p = 0.70)
AdjustedC -0.048 ± 0.032 -0.023 ± 0.023 -0.049 ± 0.074 -0.027 ± 0.023 -0.042 ± 0.107
+ PM2.5 + acidity (p = 0.13) (p = 0.32) (p = 0.51) (p = 0.24) (p = 0.69)

Adjustedb -0.087 ± 0.039 -0.063 ± 0.025 -0.082 ± 0.103 -0.026 ± 0.032 -0.113 ± 0.124
(.40 ppbd) (p = 0.03) (p = 0.01) (p = 0.42) (p = 0.42) (p = 0.36)

Adjustedc -0.094 ± 0.050 -0.048 ± 0.036 -0.178 ± 0.118 -0.049 ± 0.037 -0.177 ± 0.170
+ PM25 + acidity (p= 0.06) (p = 0.18) (p= 0.13) (p= 0.18) (p = 0.30)
(.40 ppbd)

Abbreviations: FEV1, forced expiratory volume in 1 sec; FVC, forced vital capacity; PEFR, peak expiratory rate; FEF2575%, forced expiratory flow between 25 and 75% of FVC; PM25, fine
particulate matter.
aRegression coefficients for 03 ± standard error in posthike percent change per ppb mean 03 for each pulmonary function measure.
bAdjusted for age, hours hiked, sex, former versus never smoker status, history of physician-diagnosed asthma or severe wheeze symptoms over previous year, carrying a backpack, reaching the summit, and mean
ambient temperature during prehike and posthike spirometry.
cAdjusted as above + ambient fine particulate (<2.5 pm or PM2.5) + ambient strong aerosol acidity concentrations; because of missing fine particulate and/or strong aerosol acidity values, 507 observations were
included in these adjusted models.
dRegression coefficients of piecewise model above inflection point of 40 ppb 03.

26.5 nmol/m3). This association persisted
(but was not statistically significant) after
adjustment for mean 03 (Table 4).
Although there were associations between
posthike changes in FEV1 and both PM2.5
(0.4% decline across the interquartile range
of 9 pg/m3) and aerosol acidity (0.1%
decline across the interquartile range of 1.3
pg/m3) exposures, these associations were
diminished and no longer significant after
adjustment for 03 (Table 4). Changes in
the other measures of pulmonary function
(FEV1/FVC and FEF25-75%) had no con-
sistent or significant associations with
ambient PM25 or strong aerosol acidity.
These effect estimates were of similar mag-
nitude to the estimated 0 effect. For
example, in multivariate models, each 15-
ppb increase in mean 03 (the interquartile
range of mean 03 exposures) was associat-
ed with a 0.8% decline in FEV1 and a
0.6% decline in FVC (Table 2).

Discussion
We assessed the effects of simultaneous
exposures to ambient 03, PM25, and
strong aerosol acidity on pulmonary func-
tion in an adult population with broad
ranging ages and fitness levels; this has not
been done in most other field studies of
adult 03 exposure (16-18), despite the fact
that exposure to pollutant mixtures is char-
acteristic of the ambient environment,
which in turn affects diverse populations.
The same magnitude of 03-associated
declines in FEV1 was seen after simultane-
ous adjustment for PM2.5 and acid aerosols
(Table 2). There were consistent, albeit
diminished, 03-associated declines in FVC
after adjustment for other ambient pollu-
tant exposures (Table 2).

Based on the average ambient 03 during
exercise, the estimated effects of 03 exposure

were larger than have been described in most
previous field studies (16-18) and experi-
mental chamber studies (1,3). Among the
Mt. Washington hikers with mean FEVI of
4.08 liters and mean FVC of 5.14 liters, our
findings approximate declines of 106 ml and
113 ml, respectively, in each of these mea-
sures for each 50-ppb increment in mean
ambient 03 level. When restricted to mean
03 exposures >40 ppb, our effect estimates
were even larger (Table 2). In a study of 24
male and female joggers by Selwyn et al.
(16), results were consistent with a smaller
effect estimate of 20-ml dedine in FEVI for
each 50-ppb increment in 03. Our results
are doser to those of Brunekreef et al. (17) in
their study of 23 male amateur cyclists and
those of Spektor et al. (18) in a study of 30
exercising adults; their effect estimates were

consistent, respectively, with 78- and 70-ml
declines in FEVI and 111- and 105-ml
declines in FVC for each 50-ppb increment
in mean 03 concentration during exercise.
Differences in dose-response modeling are
unlikely to explain differences in effect esti-
mates among field studies. Previous field
studies (16-18) also used a linear dose
response as the best description of the
ozone-pulmonary function relationship and
were conducted at ambient 03 concentra-
tions similar to those observed on Mt.
Washington.

Differences in exposure duration may
explain the greater mean 03 effect estimates
seen in the current study. In three previous
field studies (16-18), most subjects' exercise
periods were less than 2 hr, compared with
an average exercise period of 8 hr on Mt.

Table 3. Linear regression models of the percentage change in pulmonary function as a function of mean
ozone by respiratory disease history, smoking status, sex, age, and hours hikeda

Variable Percent change FEV1 Percent change FVC
Respiratory disease history
Asthma or wheeze (n = 40) -0.149 ± 0.054 (p = 0.04)b -0.069 ± 0.035 (p = 0.40)b
Other hikers (n = 490) -0.036 ± 0.024 -0.039 ± 0.015

Smoking
Former (n = 125) -0.024 ± 0.040 (p = 0.42)b -0.004 ± 0.026 (p = 0.07)b
Never (n = 405) -0.059 ± 0.025 -0.055 ± 0.016

Sex
Male (n = 375) -0.055 ± 0.025 (p= 0.70)b -0.051 ± 0.016 (p= 0.24)b
Female (n = 155) -0.039 ± 0.039 -0.019 ± 0.025

Age (years)
18-27 (n = 135) -0.043 ± 0.027 (p = 0.89)c -0.038 ± 0.017 (p = 0.67)c
28-37 (n = 185) -0.067 ± 0.024 (p = 0.33)c -0.046 ± 0.016 (p = 0.92)c
38-47 (n = 142) -0.053 ± 0.026 (p = 0.48)c -0.039 ± 0.017 (p = 0.52)c
48-64 (n = 68) -0.038 ± 0.033 -0.048 ± 0.021
Hours hiked
8-12 (n = 265) -0.069 ± 0.029 (p = 0.32b) -0.056 ± 0.019 (p = 0.25)b
2-8 (n = 265) -0.033 ± 0.029 -0.029 ± 0.018

Abbreviations: FEV1, forced expiratory volume in 1 sec; FVC, forced vital capacity.
aRegression coefficients for 03 ± standard error in posthike percent change per ppb mean 03 adjusted for age, hours hiked, sex, former ver-
sus never smoker status, history of physician-diagnosed asthma or severe wheeze symptoms over previous year, carrying a backpack,
reaching the summit, and mean ambienttemperature during prehike and posthike spirometry.
bp-Values for difference in 03 effect between groups.
cp-Values for difference in 03 effect between each age category and the oldest age group.
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Table 4. Linear regression models of the percentage change in pulmonary function as a function of ambi-
ent pollution for fine particulate matter (n = 507) and aerosol acidity (n = 507)a
Parameter/Model Percent change FEV1 Percent change FVC Percent change PEFR
Fine particulate matter
(<2.5 pm, pg/im3)

Univariate -0.035 ± 0.015 -0.038 ± 0.011 -0.084 ± 0.035
(p = 0.02) (p = 0.0004) (p = 0.02)

Adjustedb -0.041 ± 0.018 -0.043 ± 0.013 -0.087 ± 0.044
(p = 0.03) (p = 0.001) (p = 0.05)

Adjustedc + 03 -0.015 ± 0.026 -0.029 ± 0.018 -0.074 ± 0.060
(p = 0.56) (p = 0.11) (p = 0.22)

Aerosol acidity
(sulfuric acid equivalent, pg/m3)

Univariate -0.100 ± 0.050 -0.106 ± 0.036 -0.300 ± 0.117
(p = 0.05) (p = 0.003) (p = 0.01)

Adjustedb -0.109 ± 0.054 -0.107 ± 0.039 -0.294 ± 0.128
(p = 0.05) (p = 0.006) (p = 0.02)

Adjustedc + 03 -0.047 ± 0.064 -0.062 ± 0.046 -0.258 ± 0.152
(p= 0.47) (p= 0.18) (p= 0.09)

Abbreviations: FEV1, forced expiratory volume in 1 sec; FVC, forced vital capacity; PEFR, peak expiratory rate.
°Regression coefficients for each pollutant ± standard error in posthike percent change per pg/M3 where fine particulate matter and strong
aerosol acidity concentrations are adjusted to standard temperature and pressure.
bAdjusted for age, hours hiked, sex, former versus never smoker status, history of physician-diagnosed asthma or severe wheeze symptoms
over previous year, carrying a backpack, reaching the summit, and mean ambient temperature during prehike and posthike spirometry.
cAdjusted as above + mean ambient 03.

Washington. On Mt. Washington, the
number of hours hiked was an independent
predictor of declines in measures of pul-
monary function for FEV1 and FVC [after
adjustment for 03, each hour hiked was
associated with a 0.3% decline (p = 0.05) in
FEV1; data not shown]. In addition, longer
hikes were associated with a greater mean
03 effect (Table 3).

Although other factors contributing to
the effects of 03 exposure-minute ventila-
tion, 03 concentration pattern, and partici-
pants' ages, for example-may have
increased or decreased the effect of mean 03
exposure in this setting compared with other
studies, estimates of each hiker's minute ven-
tilation were not available. Proxy measures of
hike work-reaching the mountain summit,
carrying a backpack, maximum self-reported
pulse, or percentage of age-predicted maxi-
mum pulse-were not significant indepen-
dent determinants of decrements in pul-
monary function, and the interaction
between each of these measures and mean
03 were not significant (data not shown). In
addition, there was minimal hourly 03 vari-
ation during hiking periods (Fig. 1), a cir-
cumstance that likely attenuates rather than
enhances mean 03 effects (19). Lastly, the
hikers were, on average, older than partici-
pants in other field (17,18) and chamber
studies of 03 exposure (1-3), a characteristic
associated with decreased 0 responsiveness
in other studies (20) but not here (Table 3).

Although we did not collect information
on nonparticipating eligible hikers, it is
unlikely that selection bias influenced the
results because hikers' willingness to partici-
pate is very unlikely to have been related

either to air pollutant levels or their respon-
siveness to pollutants. It is possible that
unrecognized confounding influenced our
results. However, the observed associations
were adjusted for exposure to important
potential confounders of the 03-pulmonary
function relationship: concomitant pollutants
and temperature. Humidity information was
not available for these analyses, but, given the
diurnal 03 pattein (Fig. 1) and moderate-to-
cool temperatures characteristic of the site,
humidity is unlikely to have been an impor-
tant confounder. In addition, positive con-
founding by exercise or exercise-induced
asthma is unlikely to have occurred for sever-
al reasons. First, hikers with a history of asth-
ma or severe wheeze symptoms over the pre-
vious year were no more likely than healthy
hikers to hike on more polluted days (e.g., on
days with 03 concentrations above the medi-
an, 6% of hikers had a history of asthma or
wheeze compared to 9% of hikers who hiked
when 03 concentrations were below the
median; p = 0.19, data not shown). Second,
the same work or exercise was performed by
most participants; adjustment for the hours
hiked, reaching the mountain summit, carry-
ing a backpack, maximum self-reported
pulse, or percentage of age-predicted maxi-
mum pulse did not change the estimated pol-
lution effects (data not shown).

In general, 03-associated changes in
pulmonary function are greater in natural
than in controlled exposure settings (18).
Although synergism or interaction among a
variety of uncontrolled environmental fac-
tors have been hypothesized to play a role in
this finding, the explanation for this discrep-
ancy is unknown. As a consequence, there is

ongoing controversy regarding the appropri-
ate exposure-response relationship for 03-
associated pulmonary function changes.
Our findings provide additional support for
increased effect estimates under conditions
of naturally occurring 03 exposure, particu-
larly under prolonged exposure conditions
such as hiking, and even after adjustment
for concurrent environmental exposures
(PM2.5, acid aerosols, and temperature).

Exposures to both particulate (21,22)
and strong aerosol acidity (23,24) pollu-
tants have been independently associated
with acute decrements in pulmonary func-
tion. As was the case for 03, the observed
associations between measures of pul-
monary function and exposures to ambient
PM2.5 and aerosol acidity were larger than
observations from other field studies
(22,23). Furthermore, there were consistent
effects of ambient PM2.5 on both FVC and
PEFR and of ambient aerosol acidity on
PEFR after adjustment for 03 (Table 4).
Dockery and Pope (22) estimated a 0.15%
decrease in FEV1 (they did not report FVC
results) and a 0.08% decline in PEFR for
each 10 pg/m3 increase in inhalable partic-
ulate matter (aerodynamic diameter <10
pm) in an analysis combining results from
several studies of school children. Assuming
that 6 pg/m3 of PM2,5 corresponds to 10
pg/in3 of inhalable particulate matter (22),
our results are consistent with a greater
effect estimate-a 0.25% decrease in FEV1
and a 0.52% decline in PEFR after adjust-
ment for multiple covariates (Table 4). At
the same PM2.5 concentrations and after
additional adjustment for 03, the observed
dedines in FEV1 and PEFR persist, but are
nonsignificant and diminish to 0.09% and
0.44%, respectively (Table 4).

For each 6 pg/m3 (125 nmol/m3)
increment in acid aerosol exposure, our
results include a 1.8% decline in PEFR (or
1.5% decline after adjustment for 03)
(Table 4), a larger effect estimate than the
0.4-0.8% decrements described elsewhere,
with a similar exposure in children (23).

Despite our relatively large effect esti-
mates, the mean changes in pulmonary
function in this setting were small and
unlikely to result in clinical symptoms in
most individuals. However, there is a wide
range of individual susceptibility to pollu-
tants (25,26). Susceptible individuals are
likely to have substantial declines in pul-
monary function that are not apparent in an
assessment of population means. As a result,
a relatively minor change in the overall
mean effect of exposure (as reported here)
may still result in substantial changes for
certain sensitive subgroups. For example,
several studies support increased 03 suscep-
tibility among asthmatics demonstrated by
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greater lung function response (25,27) or
enhanced pulmonary inflammatory response
(28). Hikers with a history of physician-
diagnosed asthma or severe wheeze were a
sensitive subgroup in these analyses, with a
fourfold greater responsiveness to 03 than
other hikers (Table 3). This finding of
increased susceptibility to 03 was not affect-
ed by adjustment for concomitant pollutant
exposures or exercise. In addition, because
asthmatics taking medication may be less
sensitive to 03, we are likely to have under-
estimated the maximum increased sensitivity
of this subgroup because we lacked informa-
tion regarding effect modification by med-
ication. Lastly, our results demonstrated that
a substantially increased fraction of the exer-
cising population had significant declines in
lung function (>10% dedines in FEF25-75W
for example) on days with higher 03.

We observed significant effects of mean
ambient 03, PM2 5, and strong aerosol acid-
ity on pulmonary function in a wilderness
area designated for air quality protection (6).
Large numbers of visitors engage in pro-
longed outdoor exercise in this area and are
thereby at risk for acute health effects related
to ambient pollution exposures. Even with-
out considering differences in individual sus-
ceptibility, the observed effect estimates are
notable for having occurred among hikers
exposed to hourly 03 concentrations averag-
ing 40 ppb, a relatively low level characteris-
tic of much of the continental United States
and well below the currently operant
National Ambient Air Quality Standard of
0.12 ppm (120-124 ppb) for hourly 03.
Furthermore, this is the first epidemiologic
study to report the effects of long-term
ambient 03 exposures, which are applicable
to recent revisions to the 03 standard that
are based on an 8-hr average 0.08-ppm
(80-84 ppb) exposure limit (29). Physicians,
public health officials, and the general pub-
lic should be aware of the potential acute
health impact of relatively low-level air pol-
lutants not only among residents of urban

and industrial regions but also among indi-
viduals engaged in outdoor recreation in
certain wilderness areas.
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